A Preconditioner for the FETI-DP Formulation with Mortar Methods in Two Dimensions

نویسندگان

  • Hyea Hyun Kim
  • Chang-Ock Lee
چکیده

In this paper, we consider a dual-primal FETI (FETI-DP) method for elliptic problems on nonmatching grids. The FETI-DP method is a domain decomposition method that uses Lagrange multipliers to match solutions continuously across subdomain boundaries in the sense of dual-primal variables. We use the mortar matching condition as the continuity constraints for the FETI-DP formulation. We construct a preconditioner for the FETI-DP operator and show that the condition number of the preconditioned FETI-DP operator is bounded by C max i=1,... ,N {(1 + log (Hi/hi))}, where Hi and hi are sizes of domain and mesh for each subdomain, respectively, and C is a constant independent of Hi’s and hi’s. We allow jumps of coefficients of elliptic problems across subdomain boundaries. Numerical results are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FETI-DP Formulation for Two-dimensional Stokes Problem on Nonmatching Grids

We consider a FETI-DP formulation of the Stokes problem with mortar methods. To solve the Stokes problem correctly and efficiently, redundant continuity constraints are introduced. Lagrange multipliers corresponding to the redundant constraints are treated as primal variables in the FETI-DP formulation. We propose a preconditioner for the FETI-DP operator and show that the condition number of t...

متن کامل

A Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods

In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...

متن کامل

A Preconditioner for the Feti-dp Formulation of the Stokes Problem with Mortar Methods

We consider a FETI-DP formulation for the Stokes problem on nonmatching grids in 2D. The FETI-DP method is a domain decomposition method that uses Lagrange multipliers to match the solutions continuously across the subdomain boundaries in the sense of dual-primal variables. We use the mortar matching condition as the continuity constraints for the FETI-DP formulation. Moreover, to satisfy the c...

متن کامل

A Neumann-Dirichlet Preconditioner for a FETI-DP Formulation of the Two-Dimensional Stokes Problem with Mortar Methods

A FETI-DP (dual-primal finite element tearing and interconnecting) formulation for the two-dimensional Stokes problem with mortar methods is considered. Separate sets of unknowns are used for velocity on interfaces, and the mortar constraints are enforced on the velocity unknowns by Lagrange multipliers. Average constraints on edges are further introduced as primal constraints to solve the Stok...

متن کامل

A FETI-DP Formulation for Compressible Elasticity with Mortar Constraints

A FETI-DP formulation for three dimensional elasticity problems on non-matching grids is considered. To resolve the nonconformity of the finite elements, a mortar matching condition is imposed on subdomain interfaces. The mortar matching condition are considered as weak continuity constraints in the FETIDP formulation. A relatively large set of primal constraints, which include average and mome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2005